Magnetic Targeted Delivery of Induced Pluripotent Stem Cells Promotes Articular Cartilage Repair

نویسندگان

  • Shinji Kotaka
  • Shigeyuki Wakitani
  • Akira Shimamoto
  • Naosuke Kamei
  • Mikiya Sawa
  • Nobuo Adachi
  • Mituo Ochi
چکیده

Cartilage regeneration treatments using stem cells are associated with problems due to the cell source and the difficulty of delivering the cells to the cartilage defect. We consider labeled induced pluripotent stem (iPS) cells to be an ideal source of cells for tissue regeneration, and if iPS cells could be delivered only into cartilage defects, it would be possible to repair articular cartilage. Consequently, we investigated the effect of magnetically labeled iPS (m-iPS) cells delivered into an osteochondral defect by magnetic field on the repair of articular cartilage. iPS cells were labeled magnetically and assessed for maintenance of pluripotency by their ability to form embryoid bodies in vitro and to form teratomas when injected subcutaneously into nude rats. These cells were delivered specifically into cartilage defects in nude rats using a magnetic field. The samples were graded according to the histologic grading score for cartilage regeneration. m-iPS cells differentiated into three embryonic germ layers and formed teratomas in the subcutaneous tissue. The histologic grading score was significantly better in the treatment group compared to the control group. m-iPS cells maintained pluripotency, and the magnetic delivery system proved useful and safe for cartilage repair using iPS cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induced pluripotent stem cells in cartilage repair.

Articular cartilage repair techniques are challenging. Human embryonic stem cells and induced pluripotent stem cells (iPSCs) theoretically provide an unlimited number of specialized cells which could be used in articular cartilage repair. However thus far chondrocytes from iPSCs have been created primarily by viral transfection and with the use of cocultured feeder cells. In addition chondrocyt...

متن کامل

Pluripotent Stem Cells: Differentiation Potential and Therapeutic Efficacy for Cartilage Repair

Articular cartilage injuries, often caused by trauma, have a limited potential to heal, which over time, may lead to osteoarthritis, an inflammatory and degenerative joint disease frequently associated with activity-related pain, swelling and impaired mobility. Many treatment modalities have been introduced but with limited success due to the formation of inferior fibrocartilage at the damaged ...

متن کامل

Conditioned medium derived from mesenchymal Stem cells regenerates’ defected articular cartilage

Background & Aims: One of cell- based technical issues associated with cartilage repair assay is delivering cells to the site of the parts where damage is created. Mesenchymal stem cells (MSCs) with their chondrogenic potential are ideal candidates for cartilage regeneration. High expression of cartilage hypertrophy markers by MSCs would result in apoptosis and ossification. This investigation ...

متن کامل

Enhanced chondrogenic differentiation of induced pluripotent stem cells derived from human articular cartilage

INTRODUCTION: Acute impact-induced joint trauma often affects young and middleaged adults and significantly increases the risk of developing posttraumatic osteoarthritis. Since joint replacement surgery is not a realistic option for young individuals, there is a need for the development of alternative therapies to treat large cartilage defects. Because of their unlimited self-renewal, developme...

متن کامل

Repair of cartilage defects in osteoarthritis rats with induced pluripotent stem cell derived chondrocytes

BACKGROUND The incapacity of articular cartilage (AC) for self-repair after damage ultimately leads to the development of osteoarthritis. Stem cell-based therapy has been proposed for the treatment of osteoarthritis (OA) and induced pluripotent stem cells (iPSCs) are becoming a promising stem cell source. RESULTS Three steps were developed to differentiate human iPSCs into chondrocytes which ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017